
Восточная горнорудная компания

FORUM

- Самый большой парк горнотранспортной техники:
 - 200+ карьерных самосвала высокой грузоподъёмности и 30+ больших экскаваторов
 - 80+ тракторно-бульдозерной техники
- Самый протяжённый конвейер в России 23 км
- 4 900 сотрудников
- 15,1 млн тонн угля / 183 млн м3 горной массы в 2024 году

Результаты ВГК в 2025 году:

- 20+ млн. руб. экономический эффект за 1 месяц работы MAS
- –15 мин. незапланированного простоя на дозаправку (агент Refuel)
- –25% Ранних сходов и поздних выходов в пересменку

Оперативное управление горнотранспортным комплексом

На любом предприятии есть большое количество потерь, связанных с вариабельностью производственных операций и простоев

> 12 000

отклонений от нормативов технологического регламента за смену наблюдается на горном предприятии

< 0.1%

от общего количества отклонений обрабатывается обычным диспетчером в смену

Оперативное управление горнотранспортным комплексом

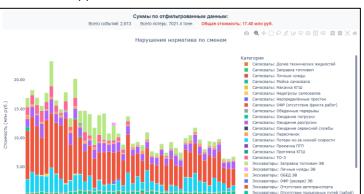
Ключевые проблемы

- Поток данных превышает возможностей человека решения запаздывают.
- События разрознены и без единого контекста теряются причинноследственные связи и приоритеты.
- Много вовлечённых, что создает коммуникационный шум и хаос взаимодействия

Итог - рост простоев и потерь производительности: оперативный персонал реагирует постфактум вместо управления рисками и выработкой "здесь и сейчас".

Примеры показателей эффективности

Комплекс	=	08:00 - 10:00	10:00 - 12:00	12:00 - 14:00	14:00 - 16:00	16:00 - 18:00
		40346 +6583	37786 +4023	36935 +3172	22952 -10811	31170 +218
		251 ₪ 33543 ② 3623 ◎ 251	30578	Ø 30395 ⊕ 3839 ⊕ 102	Ø 17011	24185 ② 1843 ⊙ 34 🗵 2936
		△ 2929	∆b 2590	△b 2599		△h 2172
ЭКГ 20 /30	#A 3.7	2496 / 2080 +416	2208 / 2080 +128	1920 / 2080 -160	384 / 2080 -1696	2016 / 1907 +109
5 🗸		☑ 2496	2208	22 1920	384	☑ 1824 🗵 192
		43.6 № 3.3	92.9 ■ 3.5	88.7 № 4.4 △ 219.6	7.0 ■ 5.5 △ 222.3	18.7 №# 3.5
					8C 489	
WK 20 /97	#A 3.8	2880 / 2253 +627	1920 / 2253 -333	2016 / 2253 -237	864 / 2253 -1389	1824 / 2066 -242
6 🗸		☑ 2880	1920	2016	☑ 864	☑ 1632 🗵 192
_		③ 28.6 ±8 2.6 224.3	33.1 ■ 2.7 △ 220.3	48.5 ■ 3.0 △ 210.5	⑤ 11.1 ≠# 3.0	③ 37.3 ⋈間3.0 <u>A</u> 215.0
			Mo	•	BEP3B	II II II II II
WK 20 /98	IA 4.3	2688 / 1907 +781	2016 / 1907 +109	1920 / 1907 +13	1248 / 1907 -659	1632 / 1748 -116
6 🗸		☑ 2688	2016	23 1920	iii 1248	☑ 1440 区 192
		♠ 57.8 ★ 3.0 ♠ 222.6	91.9 ■ 3.6 227.2	125.4 ■ 3.6 △ 226.1	21.9 № 2.7 226.3	12.9 ■ 3.1 △ 218.0
					58P 3B	IIII I III
WK 20 /101	#4 3.2	2688 / 2253 +435	2400 / 2253 +147	2592 / 2253 +339	960 / 2253 -1293	2400 / 2066 +334
6 🗸		☑ 2688	₫ 2400	☑ 2592	20 960	☑ 2208 🗵 192
		97.4 □ 82.7 □ 219.8	93.8 ■ 224.7	105.8 ⊯		64.6 № 2.8
					БВРЭВ 	
R 9400 E /7	/A 4.0	2112 / 173 +1939	2016 / 173 +1843	1632 / 173 +1459	384 / 173 +211	0 / 159 -159
1 🗸		☑ 2112	2016	☑ 1632	384	
			31.6 № 3.4	18.8 № 3.7	3.7 ■ 3.5 △ 217.8	O #I
		<u>, </u>			B. 58P 3B	ТО,КР,ППР ЭВ


Итого	8.5		8.8		8.2			0087						15.85					
Цикл погрузки, %		109.58	58 7 110.51 ▼		10 136.21 🕶			Самосвал						Минуты					
Скорость на магистрали общая, км/ч		24.1	9	24.6 ^	9	24.6 >	^ PC 2		2000/94					0.27 → 9.07 -					
Простои энергетиков, ч		0	10	0 >	10	0 >		✓ Экскаватор						Минуты/рейс					
Полнота погрузки, %	7	102.86	7	102.67 🕶	6	101.64 🕶		4 БАЛЛОВ 4 БАЛЛОВ											
Отсутствие КС на рейс, мин/рейс	8	0.52	10	0.4 🕶	5	0.65 📤		Ожидание погрузки на ре					еи	L, MUH	he	ИС		^	
Ожидание погрузки на рейс, мин/рейс	7	2.35	6	2.53 🕶	4	2.92 🕶		Overgouse gospycka up poi					~ ×		/00	×-		>	
КТГ Экскаваторы, %	10	94.39	10	89.47 🕶	10	89.8 📤	10	94.1 📤	10	94.4 🛋	10	93.37 🕶	10	92.95 🕶	10	91.98 🕶	10	89.4	
КТГ Самосвалы, %	10	95.2	9	93.77 🕶	9	93.92 -	9	93.23 🕶	9	93.5 📤	9	93.76 📤	10	94.78 -	10	94.48 🕶	10	94.7	
КИО экспл. Экскаваторы, %	9	93.14	10	95.54 📤	9	93.34 🕶	9	93.55 📤	7	91.34 🕶	6	90.4 🕶	10	94.82 -	10	95.23 -	10	9	
КИО экспл. Самосвалы, %	10	98.23	10	98.24 📤	10	97.36 🕶	10	97.09 🕶	10	97.28 📤	10	97.06 🕶	10	97.07 -	10	97.5 ∸	10	97.6	
Показатель		09:00		10:00		11:00		12:00		13:00		14:00		15:00		16:00		17:00	

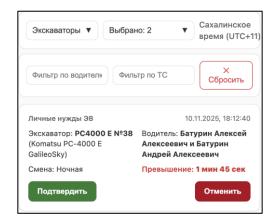
Основной инструмент в борьбе с потерями – OES.MAS (Multi-Agent System)

Модуль измерения потерь

- При любом отклонении от норматива запускается настраиваемый набор событий для контроля нормы времени и отработки потери в течение смены
- **Каждая потеря**, статус ее обработки и решения **отображаются в MAS-Мониторе** передовом интерфейсе для работы с потерями в смене
- MAS-Монитор покажет, каков потенциал экономического эффекта от снижения потерь в объемах и деньгах

ИИ-агенты для работы с потерями

- **30+ ИИ-агентов** следят за ключевыми потерями (заправка, простои, циклы, недогрузы) и «подталкивают» операторов техники напрямую
- Жизненный цикл каждого события: «событие → предупреждение → нарушение → директива» фиксируется в системе
- Ролевая модель + real-time отчёты показывают статус работы агентов и ключевые зоны потерь внутри каждой смены


Внедрение ИИ – это не ИТ проект

MAS.Road_Monitor.

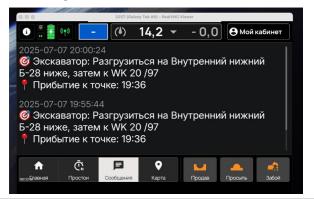
ИИ агент отслеживает дорожную ситуацию на основе телеметрии от самосвалов, видит снижение скорости на участках, заужения дорог и выдает рекомендации диспетчеру направить технику на конкретный участок с приоритизацией эффекта.

MAS.Operator_Control.

ИИ агент отслеживает работу машиниста ЭВ по основным параметрам:

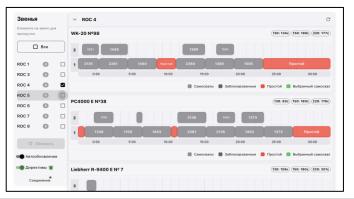
- •Скорость погрузки,
- •Угол поворота платформы,
- •Недогрузы самосвалов

При обнаружении отклонений выдает сообщение горному диспетчеру, с рекомендациями по работе с машинистом.


Автоматическая балансировка комплексов

MAS устраняет причины простоев и падения производительности в смене

- **30+ ИИ-агентов** следят за ключевыми потерями (заправка, простои, циклы, недогрузы) и «подталкивают» операторов техники напрямую
- **Каждая потеря**, статус ее обработки и решения **отображаются в MAS-Мониторе** передовом интерфейсе для работы с потерями в смене
- Real-time отчёты показывают **статус выполнения каждой директивы**


Директивы на планшет

Truck_Balance направляет самосвалы и не допускает простоев экскаваторов

- **Нейросетевой алгоритм** рассчитывает, сколько КС окажутся у каждого экскаватора, и выявляет будущие простои
- Балансировщик стабилизирует потоки **парк самосвалов работает как «рой»** без простоя экскаваторов
- Система проверяет десятки вариантов и предлагает оптимальную расстановку

Экран с прогнозом очередей

Внедрение ИИ – это не ИТ проект

Оператор техники

Диспетчер

Линейный руководитель

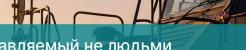
Типичное поведение роли

 Работает по звонку диспетчера и не следит за эффективностью Перегружен отчетностью и работает в ручном режиме Видит потери постфактум в отчетности и не реагирует на большую их часть

Трансформация в рамках системы OES

- Вовремя реализует четкие директивы, выдаваемые ИИбалансировщиком
- Проактивно реагирует на уведомления от ИИ-агента по предупреждению простоев и по факту нарушений
- Знает подробную статистику своих нарушений и зон роста эффективности

- Следит за ключевыми показателями и вмешивается при необходимости
- За счет ИИ-агентов, автоматизирующих функции диспетчера, успевает реагировать на ключевые события в карьере
- Контролирует корректную настройку цифровой системы и исполнение директив


- Постоянно ищет точки роста объемов внутри смены и системно снижает потери в диалоге с ИИ
- Работает в смене с операторами, систематически нарушающими технологический регламент
- Нацеливает ИИ-агентов на области с наибольшими потерями

Ролевая модель диспетчера должна включать **активную** позицию в отношении производственной эффективности:

- проактивно предупреждать проблемы
- реагировать на отклонения в момент их возникновения
- постоянно **искать** точки роста и возможности снижения потерь

Мы создаем новый стандарт отрасли - экосистему, которая станет операционной системой горного бизнеса

Карьер, управляемый не людьми, а искусственным интеллектом

Система, которая сама выполняет цели производства и дает оптимальные задания каждому оператору

Подход в котором эффективность на порядок выше, а культура и дисциплина встроены в саму ткань производства

и этот стандарт начинается здесь и сейчас