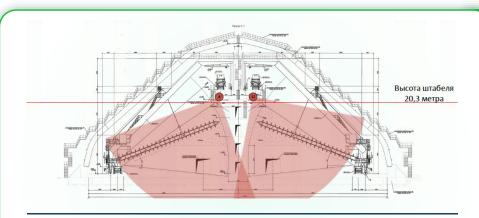

Цифровой двойник усреднительного склада на горно-рудном предприятии

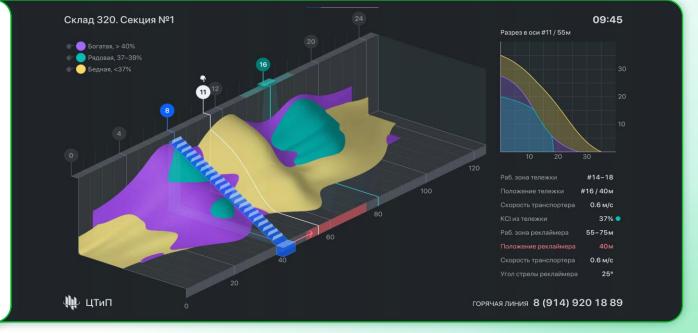
Кирилл Никитин Руководитель направления

Изменение качества подаваемой руды на сильвинитовую обогатительную фабрику (СОФ) вызывает потери целевого продукта в отходах

2 2_Как должно быть


Сокращение % содержания КСL в галитовых отходах на 1,3 %

Система измерения объёма и качества складируемой руды с рекомендациями по управлению рудопотоком позволит снизить разброс КСІ в руде, подаваемой на СОФ



Модель процесса шихтования и транспортировки руды склада

Новые компоненты системы:

- Система измерения объёма сыпучих материалов
- ML-модель с ограничениями для управления объёмом, качеством руды, подачей рудопотока на СОФ
- Система визуализации рекомендаций для управления шихтованием потока руды и рудопотоком на СОФ

Существующие компоненты системы:

- поточные весы и калиметр 1-ого потока руды на склад 320 (320BW01 и 320QRGI)
- поточные весы и калиметр 2-ого потока руды на склад 320 (314BW01 и 314QRGI)
- поточные весы и калиметр потока руды на СОФ (340BW01 и К 340QRGI)

- система позиционирования тележек на складе 320
- система позиционирования реклаймеров на складе 320

Онлайн-измерение объёма руды, хранящейся на складе, затруднительно из-за высокой запылённости рабочей зоны

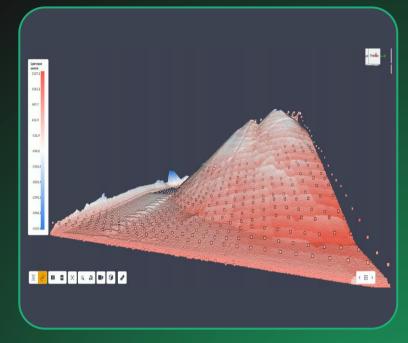
технологический вызов для горнодобывающей отрасли

Сравнение существующих решений для использования в системе измерения объема сыпучих материалов

Параметр	Лидар	Радар с частотной модуляцией
Рабочий принцип	Лазерное сканирование, расчёт расстояния по времени пролёта или фазовому сдвигу, 3D-реконструкция объёмов	Передача/приём электромагнитного сигнала с изменяющейся частотой, расчёт по временному или фазовому сдвигу
Длина волны	Короче (инфракрасные/оптические диапазоны)	Длиннее (микроволновые и радиочастотные диапазоны)
Точность измерения	Очень высокая, до сантиметров; чувствителен к отражательной способности и форме объекта	Высокая; погрешности обусловлены помехами, геометрией поверхности
Сценарии использования	Измерение объёмов сыпучих грузов, складов, 3D- картирование, монтаж	Измерение объёма в силосах, резервуарах, больших хранилищах с твёрдыми веществами
Условия работы	Требует видимости и прозрачности среды, чувствителен к пыли, влажности	Работает при высоком содержании пыли, в сложных условиях
Скорость измерения	Высокая, возможна автоматизация и обработка больших объёмов	Высокая, измерения в реальном времени
Ограничения	Трудности с металлическими, прозрачными, сильно отражающими или плотными материалами	Ограничения на минимальный размер объекта; менее чувствителен к мелким деталям
Стоимость внедрения	Высокая, требует точного калибровочного оборудования	Средняя, проще интеграция в промышленность

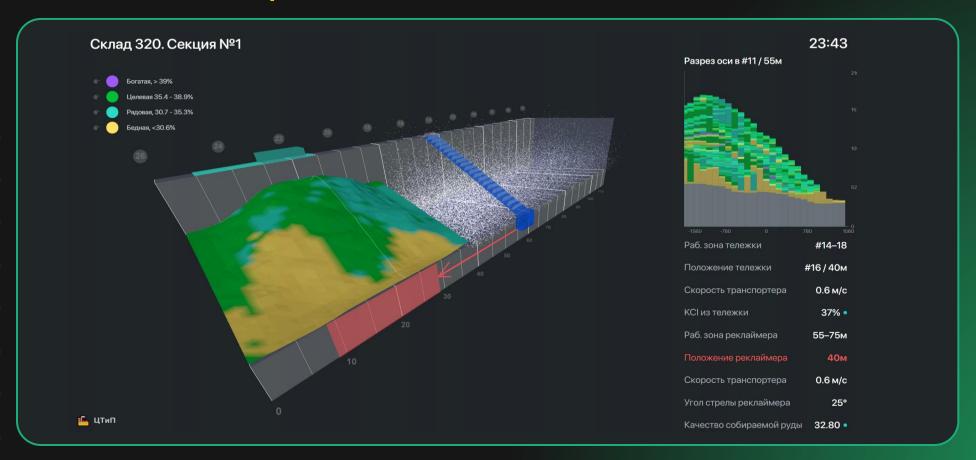
Сравнение существующих решений по сложности обслуживания

Критерий обслуживания	Лидар	Радар с частотной модуляцией
Сложность аппаратная	Высокая: точная калибровка, герметизация, защита от влаги, высокая чувствительность к механическим повреждениям	Низкая: компактная антенна, простая конструкция, хорошо работает при загрязнении и запылении
Ремонтопригодность	Менее удобен, часто требуется замена дорогостоящих узлов; сложные работы по замене и настройке	Замена — стандартная и недорогая, узлы проще/дешевле
Плановое обслуживание	Важна регулярная диагностика, мониторинг и превентивное обслуживание, отслеживание аномалий	Требуется реже, обычно ограничивается проверкой электрики и антенны
Влияние состояния среды	Чувствителен к погоде, загрязнению, влажности; требует периодической очистки и контроля герметичности	Неприхотлив, стабильно работает в пылевых, влажных и сложных средах, редко нуждается в чистке
ПО и обработка данных	Необходимость обновления сложного ПО, большие объёмы данных для хранения и обработки	ПО менее требовательно, обработка данных проще, занимает меньше ресурсов
Стоимость и частота обслуживания	Выше: стоимость компонентов и сложность обслуживания приводят к повышенным затратам	Ниже: малы расходы, редко возникают сложные поломки, простота в эксплуатации
Общее удобство	Требует квалифицированного персонала и специализированного сервиса	Штатный технический персонал без дополнительного обучения справляется с обслуживанием
Сложность аппаратная	Высокая: точная калибровка, герметизация, защита от влаги, высокая чувствительность к механическим повреждениям	Низкая: компактная антенна, простая конструкция, хорошо работает при загрязнении и запылении


Применение российских бесконтактных радарных уровнемеров, работающих по принципу FMCW-радара (радиолокации)

обеспечило возможность автоматизированной и точной цифровой инвентаризации запасов руды на складе в онлайн режиме

Средняя относительная погрешность между маркшейдерскими замерами объёма руды на складе и измерениями радарной системы составила 2,8%.


Данная точность позволяет эффективно применять любые алгоритмы шихтования для усреднения качества руды.

Система измерения объёма и качества складируемой руды обеспечивает оптимизацию технологического процесса добычи и переработки,

повышая эффективность производства и снижая операционные затраты за счёт точного контроля сырья и своевременных рекомендаций по управлению технологическим процессом.

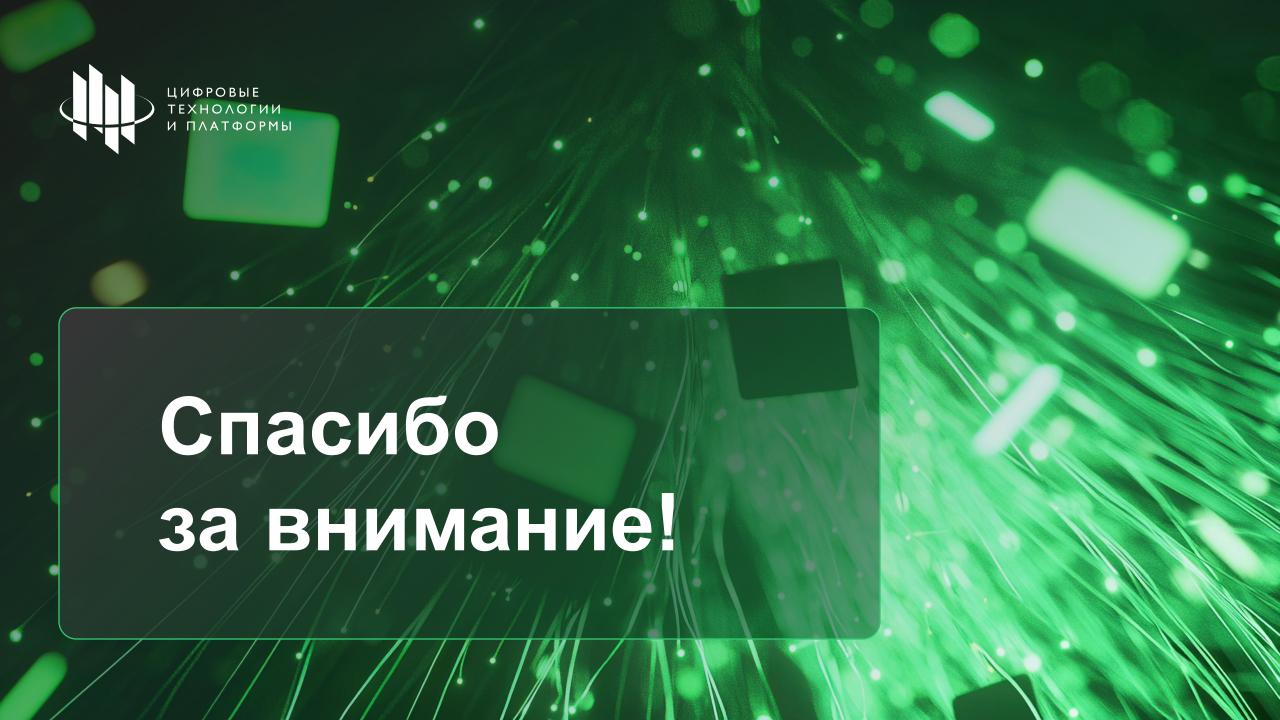
Команда проекта

Кирилл НикитинРуководитель
направления

Дмитрий КудряшовБизнес
аналитик

Александр Верхоломов Инженер данных

Дмитрий ЕвсевлеевГлавный инженер проекта



Сергей Иванчин
Руководитель отдела
метрологии
ООО «Гибрид
Инжиниринг»

Евгений КошельскийРуководитель
проектов

