

### Компания Т8

# Будущее ЦОД в России:

роль оборудования для оптических сетей в обеспечении технологической независимости

### Владимир Благонадеждин

Технический руководитель проектов Т8

27.02.2025







# Компания Т8

Российский разработчик и производитель телекоммуникационного DWDM-оборудования и решений для оптических сетей связи

> 130 000 KM

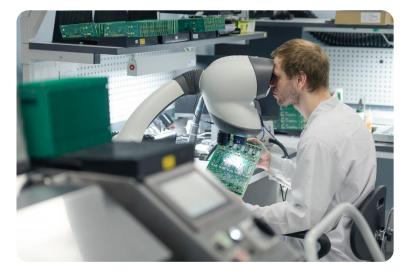
DWDM-сетей создано на базе оборудования Т8

6 млрд руб (выручка)

в год производится > 10 000 DWDM-систем

20 лет

в технологиях связи 500+ сотрудников

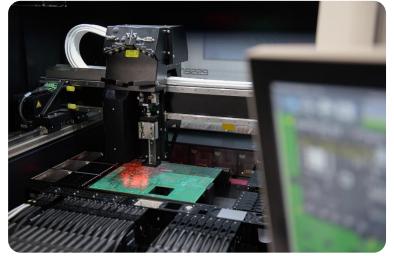

250 разработчиков6 докторов наук30 кандидатов наук

# Собственные разработка и производство

18 I DMDM-CMCTEMN

500+ сотрудников: 250 разработчиков, 6 докторов наук, 30 кандидатов наук



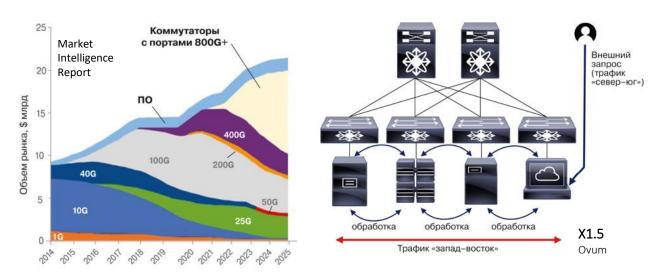













# Задачи и новые вызовы

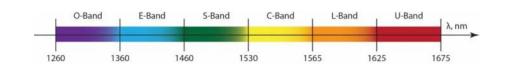


### Особенности модели распределения трафика ЦОД



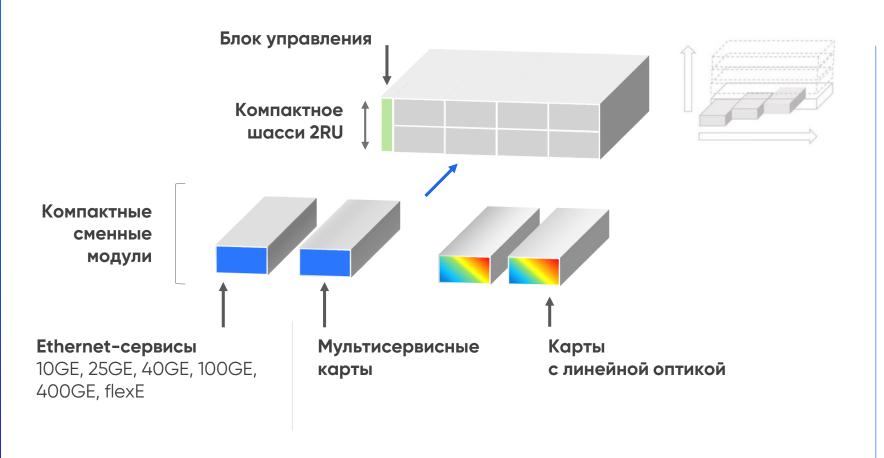
#### Новые технологии:

- Искусственный интеллект (AI) и облачные технологии
- Развитие частных сетей в сегменте Enterprise
- Сети доставки контента (CDN)
- Мобильные сети 4G/5G
- Интернет вещей (IoT)


? Как решить проблему пропускной способности без существенного увеличения стоимости TCO?

# Рост трафика опережает темпы прокладки нового ВОК на 10~20%




### Задачи:

- Увеличение общей емкости системы
- Снижение стоимости за бит/с/км
- Уменьшение задержки
- Повышение гибкости/автономности
- Ускорение восстановления после аварий
- Повышение безопасности/доверенности
- Транспорт сигналов синхронизации



# Концепция компактных модульных платформ





- Клиенты в форм-факторах SFP28, SFP+, QSFP+, QSFP28, QSFP-DD;
- Использование breakout-кабелей для подключения низкоскоростных клиентов

### **«PAY-AS-YOU-GROW»**

Расширение по мере роста потребностей

### Архитектура «LEGO»

Пользователь может собрать любой функционал в рамках одного шасси

### Компактность (2 RU)

### Энергопотребление

### Программируемость

Дезагрегация. Открытые интерфейсы

Упрощенные процедуры обслуживания и управления

# Компактная модульная DWDM-платформа Т8 с высокой пропускной способностью





Блоки вентиляции Блоки управления 2+2 1+1

Блоки питания 1+1
AC/DC 220V/48V

Фронтальный вид шасси V2R-DCI

Вид задней стороны шасси DCIv2

# Передовые технологии в сочетании с низкой стоимостью трафика



2U I 6.4T

# ПРОПУСКНАЯ СПОСОБНОСТЬ ШАССИ ДО 6.4Т

При подключении 8 линейных карт по 800 Гбит (2х400GE) с гибким регулированием (баланс между скоростью и дальностью)



# КОМПАКТНАЯ МОДУЛЬНАЯ АРХИТЕКТУРА

88  $MM (H) \times 442 MM (W) \times 710 (D)$ 

8 сменных слотовых устройств (шириной 2.5U) или 4 сменных слотовых устройства (шириной 5U) с возможностью «горячей» замены



## ОДНА ПЛАТФОРМА ДЛЯ ЛЮБЫХ РАССТОЯНИЙ

В одном шасси объединены линейные карты и OLS (оптические усилители, мультиплексоры и другие оптические блоки)



# ГИБКОЕ МАСШТАБИРОВАНИЕ ЕМКОСТИ ДО 600G НА ДЛИНУ ВОЛНЫ

Широкий выбор линейных карт с возможностью настройки скорости линейных интерфейсов от 100 до 600 Гбит/с

# Передовые технологии в сочетании с низкой стоимостью трафика





## ЭФФЕКТИВНОЕ ОХЛАЖДЕНИЕ

Система охлаждения, спроектированная под инфраструктуру ЦОД



### ВЫСОКАЯ ЭНЕРГОЭФФЕКТИВНОСТЬ

0.2 Вт/Гбит/с



### **МУЛЬТИСЕРВИСНОСТЬ**

Поддержка мультисервисных клиентов от 10 до 400G



## УДОБНОЕ ВНЕШНЕЕ УПРАВЛЕНИЕ

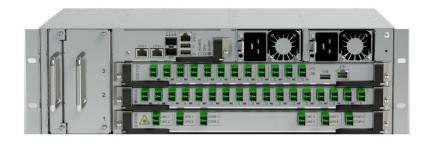
Широкий набор интерфейсов для управления/мониторинга и интеграции с внешними системами заказчика

# Эффективное решение для соединения дата-центров





Емкость DWDM-платформы T8 DCI V2 составляет 6.4 Тбит/с, что является лучшим показателем и превосходит текущие возможности систем конкурентов на рынке РФ


Платформа предназначена для соединений точка-точка и защищенное кольцо между ЦОД

Оператор получает компактное «коробочное» решение с высокой пропускной способностью и возможностью гибкого масштабирования сети

# OTDR-система «Раменка»

Мониторинг волоконно-оптических линий связи





работа в «темном» и «светлом» волокнах

мониторинг состояния волокна в автоматическом режиме автоматизация обслуживания оптических линий связи

сокращение времени ремонтных работ на линии

### В составе DWDM-системы

#### Преимущества:

единый интерфейс для оператора (DWDM-оборудование и OTDR-система)

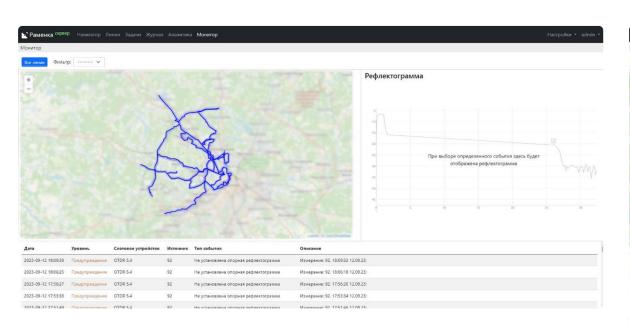
возможность автоматически управлять приемо-передающими блоками и усилителями на основании показаний OTDR

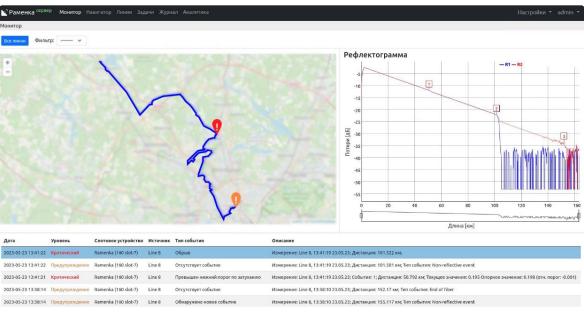
## Внешняя система мониторинга

### Преимущества:

возможность установки при наличии приемо-передающего оборудования других вендоров

привязка к географической карте


система оповещений


аналитика долговременных трендов

2

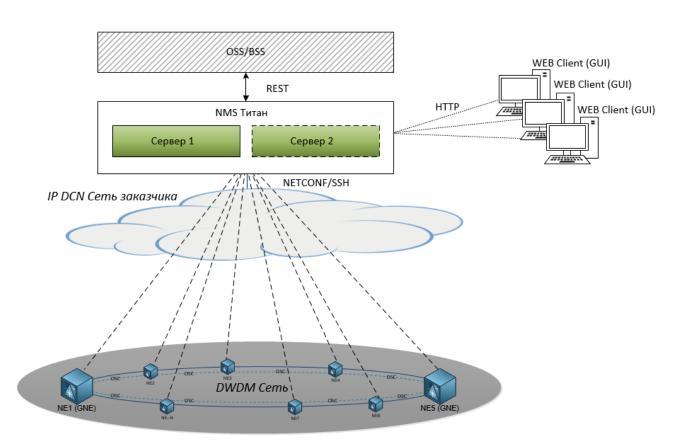
# Функционал системы мониторинга ВОЛС







- Оповещения визуальные, sms, e-mail, SNMP
- Ведение статистики оптических параметров волокна за длительный период времени


- Мониторинг отклонения величины затухания, потерь, отражения, полных потерь, длины волокна
- Привязка к географической карте (OSM)

# **NMS Титан**

Система управления класса NMS (Network Management System), для централизованного управления оборудованием DWDM и интеграции с системами OSS/BSS



NMS Титан
в реестре российского ПО
reestr.digital.gov.ru



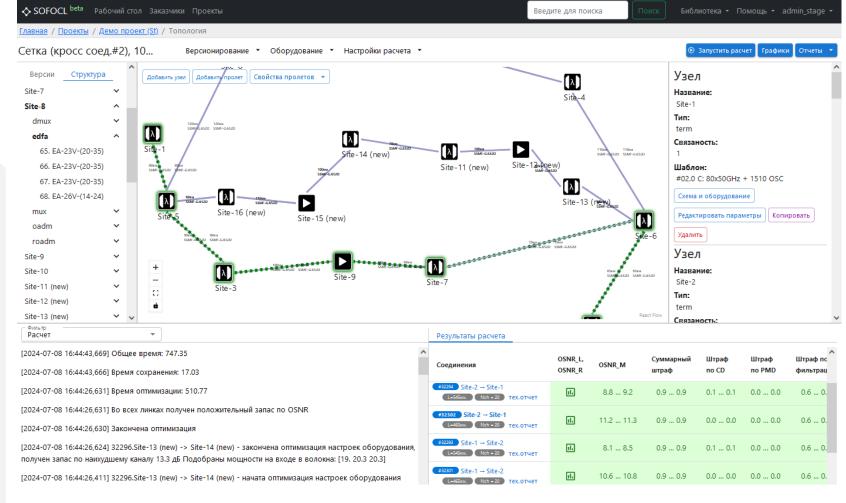
## Базовые характеристики

- > Операционная система: Linux; Astra Linux SE
- > Аппаратная часть: поддержка х86 архитектуры
- > Взаимодействие с сетью: (SBI) Netconf/SSH

## Преимущества

**Резервирование:** распределенная архитектура с балансировкой нагрузки

Пользовательский интерфейс: WEB UI с поддержкой многооконного режима


Интеграция с OSS: NBI интерфейс REST API

# САПР: «Софокл»

# расчет/оптимизация произвольных топологий

### Работа с сетью на уровне топологии:

- Добавление сетевых элементов/узлов с произвольным кол-вом точек подключение
- Поддержка 3х основных стандартов волокна G652, G654, G655
- Возможность задания произвольного канального канального плана
- Отображение сводной отчетности по все созданным соединениям

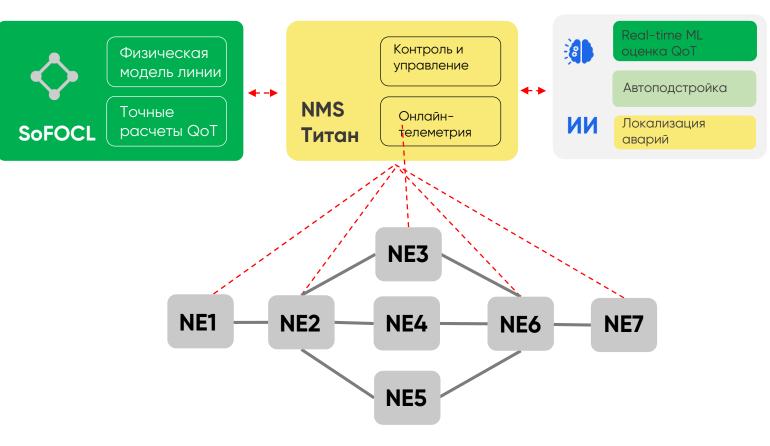


#### Группы каналов

#### Создать маршрут

| Маршрут             | Транспондер            | Трансивер | Тип трафика |   | Символьная скорость | Тип FEC            | Каналы          | Удалить |
|---------------------|------------------------|-----------|-------------|---|---------------------|--------------------|-----------------|---------|
| 3553.Колом - Селе 💙 | MS-1200E (M1200-2-1; Y |           | 400G        | ~ | 69,435              | 27% SDFEC <b>~</b> | 192.1192.15 (2) | 8       |
| 3555.Галерный - С 💙 | MS-1200E (M1200-2-1; 🗸 |           | 400G        | ~ | 69,435              | 27% SDFEC 🗸        | 192.2192.25 (2) | 8       |
| 3557.Галерный - Л 💙 | MS-1200E (M1200-2-1; Y |           | 400G        | ~ | 69,435              | 27% SDFEC <b>~</b> | 192.3192.35 (2) | 8       |

# Цифровой двойник: физическая модель сети с учетом нелинейности




### «Цифровой двойник»

– это цифровая копия (объектная модель) реального физического объекта или процесса, помогающая увеличить эффективность бизнеса

# Возможный функционал цифрового двойника:

- Актуальная физическая модель сети заказчика
- Автоподстройка канальных мощностей
- Сигнализация о деградации качества канала
- Оценка возможности «апгрейда» старых линий и составление перечня необходимого оборудования
- Выбор оптимального резервного маршрута



# Российский центр компетенций для комплексной организации сетей связи



Производим расчет сетей различной архитектуры с учетом требований проекта и параметров оптической инфраструктуры

Организовываем тестовые зоны для подтверждения соответствия техническому заданию

Внедряем передовые DWDM-системы на магистральных и городских сетях связи, соединяем дата-центры



2 млрд руб.

Склад готовой продукции Т8 для оперативной отгрузки и решения бизнес-задач

1,7 млрд руб. Постоянный запас комплектующих



# **Владимир Благонадеждин**

Технический руководитель проектов T8

**ООО «Т8»** 107076, Москва, Краснобогатырская улица, 44/1

+7 499 271 61 61 info@t8.ru

t8.ru

Москва I

Санкт-Петербург 1

Нижний Новгород 1

Новосибирск І

# Спасибо за внимание!

Информация в данном документе предоставлена для общего ознакомления с компанией Т8, производимым оборудованием и новыми разработками. Предоставленная информация в результате действия различных факторов может нести прогностический характер и отличаться от реальных результатов. Опубликованная информация не является публичной офертой, а также предложением в какой-либо иной форме на заключение сделок. Т8 оставляет за собой право изменять указанную информацию в любое время без предварительного уведомления. Логотип является зарегистрированным товарным знаком ООО «Т8». Все права защищены.

# Российская ЭКБ



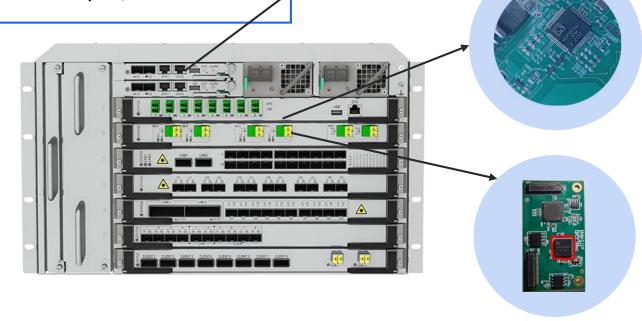
#### Российская компонентная база

Когерентный ЦСП «Румба» (АО «НПЦ «Элвис»)

Микропроцессор СНК 1892BA018 «Скиф» (АО «НПЦ «Элвис»), или аналоги

Микросхема СНК ELIOT-01 (АО «НПЦ «Элвис»), или аналоги

Микросхема МК К1986ВЕ92Т (АО «ПКК Миландр»), или аналоги\*


Микросхемы МК МІКЗ2 АМУР К1948ВКО18 (Микрон), или аналоги\*

Микросхема компаратор MIK393 (Микрон), или аналоги\*

Микросхема стабилизатор напряжения GM1117 (Микрон), или аналоги \*

\* - на стадии внедрения

# DWDMплатформа «Волга»



Процессор 1892BA018 СнК СКИФ («Элвис»)

блок управления

Микроконтроллер К1986ВЕ92Т («Миландр»)

пассивные устройства

Микроконтроллер 1892ВМ268 СнК «Элиот» («Элвис»)

блоки оптического тракта